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Agreement

The contents of this Assessment Package are supposed to be use within one year, free of
charge. The provision of this package is for assessment and testing. Once tested and verified,

the customer shall acquire the Motion Estimator firmware in a chip to be boarded in the

spacecraft.

Results obtained using the contents of this Assessment Package are agreed and encouraged

to be published, as long as referring to the name of Patchedconics, LLC.
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Introduction

Space debris have captured the attention of people both in and out of Space Industry. They
impose a threat but are a natural consequence of the exploration of space. There are
databases of tracked debris and collision risks can be assessed prior to launching a new
spacecraft to space. Areas such as Low Earth Orbit (LEO) are specially packed with those
debris due to heavy military, governmental and commercial usage.

During the planning phase of a mission, methods to safely deorbit spacecrafts can be studied.
Not always those methods are implemented, and satellites may become nonoperational,
imposing risk for current and future spacecrafts.

Spacecraft can also be designed with in-orbit servicing capability. This allows a “servicer”
satellite to approach, dock and perform maintenance, such as refueling, of another spacecraft.
Patchedconics has developed a technology that allows a satellite to identify, using the camera
sensor available onboard, precious information on the attitude dynamics of an uncooperative
target. ldentifying parameters such as the direction of the angular momentum vector and
inertia tensor is the key for allowing capture of debris or docking for servicing of satellites in
orbit. To this end, estimating the inertial tensor of the target becomes essential. Most of the

estimators cannot handle this issue, but the Motion Estimator of Patchedconics copes with it.

The Assessment Package

The purpose of this package is to provide an assessment tool for the Motion Estimator
software to interested people.

The Assessment Package is made of a Motion Simulator and a Motion Estimator. The first
reads a set of initial conditions of target and observer and generates a set of projections of
the points of interest in a frame representing a camera sensor for each time. The second
receives a set of information, containing the projections’ locations on the frame, and
estimates parameters regarding the attitude dynamics of the target.

Two Motion Simulators are provided in the package, in Python and MATLAB/Octave, and each
of them have differences in the operation method, which will be highlighted in this User Guide.

The two of them are designed and tested in Windows 10 and macOS 11 environments.
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Two Motion Estimators executables for each operational systems are included in the package.
For each of the OS, each of the Estimators works for a specific configuration of the target.
Arbitrary configuration of the target is built and defined by the users by modifying the
Simulator codes, and the estimated results are obtained.

The Motion Estimators are designed to be used with the Simulator included in the package
and also with third-party simulators. A set of inputs and arguments must be provided for the

Estimator to function properly, and those inputs will be discussed in this guide.

What is Included?

Assessment Package

Operational System == Windows / macOS &5
(chosen on download)
Simulators Languages 4\ MATLAB / Python A
Estimators” Q For Planar Markers / For Tetrahedron Markers
The Assessment Package file structure is as follows:
First Level: (MEAP_[OS]) Where this User Guide is found. There are 4 folders: data

is used by the package to transfer information between the Simulator and the
Estimator, results is where the results of the simulation/estimation are stored, ME
contains the Motion Estimators executables and auxiliary files and figures contains
images used by the python version of the Simulator.

Second Level: The ME directory contains two folders, 1 and 2. 1 is for the target
configuration in which the markers are distributed on 1 surface. 2 is for the target

configuration in which the markers are distributed on 2 surfaces.
“For better estimation results, this package provides two kinds of Estimators tuned for the

specific markers layouts. One estimator is optimized for the markers on a single plane, while

the other is optimized for the markers on two planes (on a tetrahedron).
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Motion Estimator

As mentioned in the Introduction, two Estimators are provided for each OS. They are
executable files which are exclusive to each of the supported markers configurations. The
executable files can be called using the provided Simulators written in MATLAB and Python,
as well as other simulators developed by the users, as long as the input format is respected.
The Estimators for both macOS and Windows accept the same file format as input, and
outputs in the same format. Each of the estimators shall be used with the specific markers
configuration (planar or tetrahedral).

The idea of the Motion Estimator is to provide to the observer with estimated angular
momentum, L, angular velocity, @, and inertia tensor, /, given the information of the
projection of 4 markers, which are fixed on the surface of the target, on a figure. The

estimator also outputs the estimated position and orientation of the target.

For Using with Third-Party Simulators

The operation of the Motion Estimator in the Assessment Package can be described by a

simple diagram:

Input

Outpul

MOTION ESTIMATOR
Arguments

Figure 1: Assessment Package's Motion Estimator diagram

Input is a set of data written as a comma separated CSV file with no header. It is composed of

a single line containing the following information:

Marker Marker Marker Marker I L Start, Time, Interval, Memory, reset

1, px 2, px 3, px 4, px update, sec sec sec sec
steps
X100 Yii X2i Yoi X3 Y30 X4 Yai IL ST t; dte B reset
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e The markers are assumed to be identified, so x, ;, for example, is always the position
in the X axis of the projection of Marker 1 [in pixels]

e L is the amount of stored Inertia Tensor (/) estimations required for the Angular
Momentum (L) to be updated (we recommend using IL = dte) [in steps]

e ST isthe amount of time taken from t, to the first estimation results (we recommend
using ST = 0) [in seconds]

e t;isthe time in which the projections were captured [in seconds]

e dteis the expected interval, t; — t;_; [in seconds]

e B is time span of most recent estimations stored by the estimator (we recommend
using B to be near the nutation period or longer, but even shorter values shall work)
[in seconds]

e resetis a flag — when reset = 1 the information stored by the estimator is erased
and when reset = 0 the estimator saves the information for current and future

estimation.
Arguments are 4 strings:

Argument 1 Argument 2 Argument 3 Argument 4

Input file name Directory Output file name Markers shape file
In order to generate an output, the 4 markers must be visible. If one or more markers are

hidden or out of the frame, the estimator returns same results as t;_; and waits for the 4

markers to be again visible to continue the estimations.

Assumptions

As mentioned in the previous section:

e The 4 markers are assumed to be distinguished by the image processor.

Additional assumptions are:
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1 The 4 markers maintain their relative positions, meaning that the tetrahedron formed
by the markers maintain its shape and size as defined in the file whose path is the
fourth argument

2 The projection is made in a 2000 x 2000 pixels frame

3 The positions of the markers in the frame have their origin at the center of the frame,
so the edges of the frame are [-1000, -1000], [-1000, 1000], [1000, -1000],
[1000, 1000]

4 If any of the projections have X or Y components larger than 1000 or smaller than

-1000, the marker is considered not visible.

In case the markers form a different geometry than that specified in the file, the estimator
will not work as expected. And in case the distances between the markers are different
(different scale), the estimator will provide scaled information on the position of the target.
Two version of each simulator are provided for each operational system. One assumes the 4
markers are placed in 2 different surfaces (3 in a surface and 1 in the other adjacent surface),
the other assumes the markers are all coplanar (all markers on same surface). For each of the
cases, the user has to respect the markers geometry set

in the file provided to the Estimator:

Marker 4
.(0,1,1)
1 Markers disposed on 2 surfaces:
Marker 1
. i . (1.5,0,0)
In the case of the markers being distributed in ,(\ga(;kg)r;; °
different surfaces of the spacecraft, an example ‘® °
- Marker 2
of configuration can be seen on figure 2. (151,0)

The coordinates are in meters.
Figure 2: Example of markers configuration
on 2 different planes

4

2 Markers disposed on a single surface:

In case of the markers being disposed in a Marker 1 ‘ %a{kf)”‘
(1.5,0,0) e
coplanar configuration, an example of setup can '("'335"(‘;)'3 g ’
. ] o
be seen on figure 3. Marker 2
(1.5,1,0)

The coordinates are in meters.

Figure 3: Example of coplanar markers
configuration
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Each of the configurations shown above work with a specific Estimator. For the markers
disposed on 2 surfaces use the set of files in the subfolder ME /2. For the markers disposed in

a single plane, use the set of files in the subfolder ME /1.

Markers Configuration Describing File

On Version 1.1, the option to define the configuration of the markers and provide it to the
Estimator was added. The user can define three coordinates for each marker in a body fixed
frame. Results of the estimator (regarding attitude dynamics) will be with respect to that
same coordinate system.

For simplification, we made the examples described on figures 2 and 3 predefined in the

MATLAB/Octave (MS.m) and in the Python (MS.py) simulators.

The file which defines the position of the markers is in csv format and it contains a single row

with 12 entries. Each element is a coordinate of the markers in meters:
I O N
X1 Y1 Zy X2 V2 Zy X3 V3 Z3 X4 Vs Zy

Simplified Estimator-Calling Algorithm

This Version (1.1) of the Assessment Package was specifically made to give users freedom to
explore the Motion Estimator and help them designing their own simulator and their own
setups, and for that reason a new “simulator” named MSsimple.m (as for now
MATLAB/Octave only) was also created.

Although not being the “Simulator” section, this file will be described here, as it does not
exactly simulate the dynamics of the target.

MSsimple.mscript was created to simply generate an input file and a marker configuration
file, produce a figure to illustrate the example, and call the Motion Estimator inside ME /1
directory. This code assumes no movement between target and observer. The Motion

Estimator is called twice, since it’s the minimum amount of time to generate an output.
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In the first time the Motion Estimator is called, it is reset. On the second time, only variables
t; and reset are modified as

t; =t; +dte, reset=1
Since the position of the markers is not different between the two instants, the Motion
Estimator only outputs the position of the markers and the direction cosine matrix. Other
parameters are output with a general value.
The user shall use this script as the simplest reference to usage of the Motion Estimator. It

works on both Windows and macOS platforms.

Limitations of the Motion Estimator

The Motion Estimator has a limitation regarding the angular velocity of the target. If the
angular velocity is too large, the estimation will not provide reliable results. For such cases,
we recommend decreasing the estimator interval, so information is collected with higher

frequency.
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Motion Simulator

Although the executable files of the Motion Estimator can be run using your own inputs,
Patchedconics provides in the Assessment Package our own simulator in two languages:
Python (MS.py) and MATLAB (MS.m). Right when you are provided with the Package, you can
start performing simulations.

The user may develop their own simulator with features like torque being applied to the
target, collision leading to change of angular momentum, fragmentation of solar panels
leading to change in inertia tensor. And the simulator provided can be used as a reference on

how to generate the input file and call the executable of the Estimator.

Target Properties

The target spacecraft used in the simulator has a simple geometry composed of 3 cuboids: 1
representing the main body, with dimensions a x b x ¢ and 2 representing the Solar Array
Panels (SAPs) with dimensions d x e x f (in the code f is named as g). The SAPs are connected

to the main body’s top panel through one of their edges as seen on figure 4.

front panel

V bottom panel

Figure 4: Target geometry used on the provided Motion Simulator

The 4 markers are disposed in the configurations seen on figures 5 or 6. On the first option,
three of the markers are placed on the same surface (bottom) and one on an adjacent surface

(front). In the second option, the markers are all placed in a single surface (bottom).
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Figure 5: Position of markers on 2 surfaces of target used by the simulator
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Figure 6: Position of markers in coplanar option used by the simulator

The Markers configurations seen on figures 5 and 6 (example models included in the

simulators) are compatible with the marker geometries shown on figures 2 and 3.

MATLAB/Octave Version (Recommended)

The MATLAB version of the Motion Simulator (MS.m) does not have a GUI, so variables shall
be modified by the user directly in the script.

We recommend using the MATLAB version of the software because it has shown to run more
smoothly in the tests we performed, and the visualization of the results is improved when
compared to the Python version. The MATLAB version also includes the option for the user to

perform the simulation only, without the estimator, for verification purposes, and generating
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a simple animation of the motion of the spacecraft (see figure 7). For performance purposes,

we recommend not generating the animation of the markers when doing long simulations.

1000

® Marker 1
800 ® Marker 2
Marker 3
600 ® Marker 4
400
200
K]
%
>3 0
>
-200
-400
-600
-800
-1000 : - - ’
-1000 -500 0 500 1000
X, pixels

Figure 7: Frame from MATLAB animation of markers' projections
This function (MS) contains information to be modified by the user, such as spacecraft
dimensions, initial orientation and distance from observer. The variables will be explained in
this section. Some variables were already discussed in the Estimator input section, they are

IL, ST, dte and B.

There one limitation of the Octave version of the Simulator which did not allow the insertion
of a header in the results file (results.csv). For this reason, we will specify what is each of the
48 columns in the results file:

t, Lo true, by trues lzz_true, Ixy true, Ixz_true, lyz_true, W1 true, W2 true, W3 true, L1_true, L2_true, L3_true, Ixx_est,
lyy_est, lzz_est, Ixy_est, Ixz_est, lyz_est, W01 est, W2 est, W3 est, L1 est, L2 est, L3 est, “Markers hidden?”,
“Estimator restart?”, Marker 1, Marker 1,, Marker 1,, Marker 2, Marker 2,, Marker 2,,
Marker 3., Marker 3y, Marker 3,, Marker 4,, Marker 4,, Marker 4,, DCM11, DCM1,, DCM3,
DCM21, DCM3,, DCM33, DCM31, DCM3;, DCM33

Variables to be modified by the user

dts: Simulator step size [seconds]
dte: the expected time interval between information sent to the estimator [seconds]
B: the time span of stored information by the estimator (recommended: same as nutation

period of the target or larger) [seconds]
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z ST: the time taken for the estimator to perform first
estimations (recommender: 0) [seconds]

z IL: the number of Moment of Inertia estimations

X required for next angular momentum estimation

Moment of Inertia variable update (recommended:

- 1) [steps]

P N: simulation time [seconds]

f: camera sensor size (assumed to be square)

¢

[pixels]
Figure 8: Euler angles M: Mass of the main body of the target spacecraft
[kilograms]
Msap: Mass of each Solar Array Panel [kilograms]
perr: pixel error (is multiplied by a uniformly distributed random number), which is the error
on the pixel reading [pixels]
point_animation: the user can choose whether to display an animation of the bottom and
front surfaces of the target, as well as the markers (1 is yes, 0 is no)
estimation: the user can choose whether to run the estimator (1 is yes, 0 is no)
a, b, ¢, d, e, g: the spacecraft dimensions discussed previously, (g is the length f described on
figure 4) [meters]
theta: the angle which describes the position of the SAPs, as seen on figure 4, which makes
the target symmetric in the ZX plane [rad]
X, Y, Z: the position of the observer with respect to the center of mass of the target [meters]
VX, VY, VZ: the velocity of the observer [meters/second]
phil, phi2, phi3: the initial Euler angles of the target (yaw, pitch, roll sequence) (see figure 8)
[rad]

om1l, om2, om3: the components of the angular velocity [rad/second]
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Python Version

The Python version is also offered as a source code and it includes a Graphical User Interface
(GUI), where the user can input the initial conditions for the simulator and select some other
options. Figure 9 shows the GUI and the fields to be modified.

One of the reasons why we recommend the use of the MATLAB code over the Python version

is the runtime of the code, which is shorter on the MATLAB version.

eo0e Target Spacecraft Configuration
::;::; ::f; Dimensions (refer toimage)  Input the Initial Conditions, including orientation and position of the target (Afgu;mng)l '(]f‘soggmzl)s ;r!;cfm;)r 7'3‘ 't'!e I::i?nb;(‘st 332”::\:;& SR ERe
(15,1, -2), (1.5, 0, -2), (0, 1, -2), (3, 0, -2), in case of 1 plane
a 6.0 o 314159265359 rad R: 0.0 m
b: 4.0 o 0.0 rad Ri: 0.0 m
c 4.0 o 0.0 rad Rs: 6 m
d: 1.0 we 0.02 radjsec  Vy: 0.0 m/sec
e 12.0 ws: 0.12 radjsec Vi 0.0 m/sec
f: 5.0 ws: 012 radfsec Vi 0.0 m/sec

Input time step information Markers on how many planes?

Input Solar Array Panel (SAP) position ¢ simulator and estimator (or2) 2
in degrees
e: 30.0 sim: 04 sec Accept and Simulate

N

To see more information in the window, scroll

P A
':’:("g' lhelaadiredvandbany Est: sec down with the mouse cursor over the scrollbar
i
e 500.0 Amount of past estimations used
v: g by the estimator (bandwidth): If the background is too dark and the figures'
annotations are hard to see, we recommend
turning off system dark mode.
Each SAP: 30.0 B: 1200 steps Q,
Amount data stored to start @
!npl{l the focal length of the camera estimation: 2 _
in pixels
I 2000.0 ST: 0 steps ('p
Number of times "I" is stored
Input Simulation Time in seconds for each update of "L":

T 2139 IL: 1 steps

Figure 9: GUI of the Motion Simulator written in Python

Simulator Functionality

The simulator gathers all the parameters set by the user, adjust the position of the SAPs,
calculates the Moment of Inertia (/), the center of gravity (Cgl), and generates an array
containing all the points of interest on the target (vertices and markers), named cube in the
scripts. We will refer to the variable cube as C in this guide. We chose to base the simulator

on quaternions, so the three-dimensional position of the points of interest are represented
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as [x, y, z, 1]. The MS function sends the important parameters to the pnp function which

starts the simulation.

The initial quaternion used is obtained by:
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where @ is the vector containing the Euler angles described in the variables section. The

conversion from the quaternion to the direction cosine matrix is given by:

0% — @% — q3* + q4° 2(q1q2 + q394) 2(q1q3 — 9294)
[Qlxx = 2(9192 — 9394) _CI12 + CI22 - Q32 + CI42 2(9293 + q194)
2(q193 + 9294) 2(q293 — 4194) _fhz - C122 + C132 + Q42

The derivation of the angular velocity w can be obtained through Euler’s Equation in case no

torque is being applied:

w=-11wx (o)

and the time derivation of the quaternion q is given by:

d . 1 =
E{q} =3 [@]{q}

0 (l)3 _(UZ 0)1

_ _(1)3 O 0)1 0)2

_wl _(UZ _(U3 0

where w is the angular velocity vector, whose initial conditions are described in the variables

section.
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. th . . —~
We use a simple 4™ order Runge-Kutta integration to calculate w; 44, and ¢ .a¢ from w,,

and iito, knowing the moment of inertia I. For the angular velocity, w:

ky = —I"'w,, x (Iw,,)

B At At
Kk, = —I (wto 4k, 7) x (1‘% +ky 7)

B At At
Ky = —I (wto + Ky 7) x (1‘% +ky 7)

k, = —I"*(w,, + k3At) X (Iw,, + k3At)

ki+2k,+2k; +k
wt0+At:wt0+< - 26 - 4>At

And for the quaternion @:

1
kl = E ﬂto qto
1 R '
kz = E QtO th +?At
1 R k,
k3 = E QtO th +7At

1
k4 = E QtO th + k3At

R ki+2k,+2k;+k,
qio+at = qe, + ( 6 )At
a _ Qepae
to+tAt =TT 1
o ”qt0+At”

Using the resulting quaternion, we can calculate the direction cosine matrix and from it, the

position of the points of interest C; ,; following the relation:

Ct0+At =R Cto
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[Q]Xx11 [Q]Xxlz [Q]Xxlg Pt0+At1
R = [Q]Xx21 [Q]szz [Q]Xx23 Pt0+At2

[Q]Xx31 [Q]Xx32 [Q]Xx33 Pt0+At3
0 0 0 0

Pt0+At1 = PtO + VAt

where P is the translation between observer and target.
The camera should have a 902 field of view (on the middle of the edge of the frame, which is
f x f pixels, meaning the field of view is larger
than 909).
The transformations of the markers’ positions

found in P to projections on the image Z were

observer possible using the following equations:
(X £ oo
Y=(0 f OfP
0 0 1
Y1,1/ Vi, Yin
7 = Y3,1 Y3,2 Y3,n
Y2,1/ Y20 Yom
Y3,1 Y3,2 YZ,n

Figure 10: Field of View

There will be moments when the markers will be hidden by the structure of the spacecraft,
we assumed that the main body is a cuboid, and the solar panels don’t interfere in the visibility
of the markers. In fact, with the configuration proposed in the simulator, the solar panels are
never interfering in the visibility of the markers.

To help us knowing when the markers are visible or not, two auxiliary vectors are in the C
array. These auxiliary vectors are normal to the surfaces containing markers. If the angle
between the line from the observer to a marker and the auxiliary vector correspondent to the
surface containing that marker is 902 or smaller, the markers on that surface are invisible.

In the Simulators provided, we change the value of Marker 1 projection X component to 2000

if any of the markers is invisible. If any of the markers’ projections has a component larger
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than 1000, the Estimator knows one of the markers is not visible and starts a hold state,

resuming the estimations when all the markers are again visible.
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